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In this paper we study the impact of degree correlations in the subgraph statistics of scale-free networks. In
particular we consider loops, simple cases of network subgraphs which encode the redundancy of the paths
passing through every two nodes of the network. We provide an understanding of the scaling of the clustering
coefficient in modular networks in terms of the maximal eigenvector of the average adjacency matrix of the
ensemble. Furthermore we show that correlations affect in a relevant way the average number of Hamiltonian
paths in a three-core of real world networks. We prove our results in the two-vertex correlated hidden variable
ensemble and we check the results with exact counting of small loops in real graphs.
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I. INTRODUCTION

The dynamics and the function of many complex systems
strongly affect their network structure �1–4�. In fact both
large-scale properties �like scale-free degree distribution �5��
and local properties �like recurrence of small motifs �6,7��
must be selected for widespread robustness requirements and
specific preferential uses in real graphs. A large number of
different networks �1–3�, from the Internet to the protein
interaction networks in a cell, share a scale-free degree dis-
tribution P�k��k−� with ��3 and a high clustering coeffi-
cient with respect to random Erdös-Renyi graphs �8�. The
scale-free degree distribution of a network affects the statis-
tics of subgraphs present in it, showing that large-scale prop-
erties and local properties of scale-free networks are strongly
related to each other. Special examples of subgraphs in net-
works are loops �9,10�, paths that pass through each node in
the loop only once. In random scale-free networks there are
many small-size loops compared to random graphs and there
can be a lack of Hamilton cycles �loops of length L=N� due
to the fact that most of the large paths need to pass through
hubs �10�. Along with other properties, many real scale-free
networks also have degree correlations �11�. Degree correla-
tions in real networks indicate that links are not randomly
wired and that the probability that two nodes of degree ki and
kj are linked deviates from the expected value ri,j
=kikj / ��k�N�. Consequently, correlated networks have at
least one of the three following features �i� a k-dependent
average connectivity knn�k� of the first neighbors of a node
with degree k �12,13�; �ii� a nontrivial dependence on the
connectivity of the clustering coefficient C=C�k� of nodes of
degree k �14�; �iii� a cutoff that is larger than the structural
cutoff K���k�N. In particular many real scale-free networks
show a power-law dependence on k both for knn�k� and for
C�k�, i.e., knn�k��k� and C�k��k−� �12�. Correlations do
affect the subgraph statistics as shown in the Internet �15�
and in calculations based on the scaling of the clustering
coefficient �7,16�. Every network can be represented in terms
of its adjacency matrix �a� of elements ai,j =1,0 depending if
there is a link between node i and node j. From a formal
point of view an ensemble of networks is given when a prob-
ability P�a� is assigned to each adjacency matrix �a� of N
�N elements. In an uncorrelated and undirected network
ensemble with given degree sequence 	ki
 all the links are

independent. Consequently all the matrix elements ai,j with
i� j are independent and their average value in the ensemble
can be written as �ai,j�=ri,j =

kikj

�k�N . A two-vertex correlated

network is a network in which still the matrix elements ai,j

with i� j are independent but �ai,j�=ri,j�
kikj

�k�N . Networks

with higher-order correlation instead would have noninde-
pendent matrix elements which will favor some specific mo-
tifs in the network. In this paper we are going to provide an
analytic calculation of the number of loops in two-vertex
correlated scale-free networks. In the light of our results we
are able to interpret the scaling of the clustering coefficient
C�k� in terms of the scaling of the maximal eigenvector �the
eigenvector associated with the maximal eigenvalue� of the
average adjacency matrix of the network ensemble. More-
over we show that the maximal eigenvalue and the corre-
sponding eigenvector not only determine the number of tri-
angles in the two-vertex correlated network ensemble, but
also fix the number of small loops of length 3�L�N. Fi-
nally, we are able to give a sufficient condition for the ab-
sence of Hamilton cycles in two-vertex correlated networks.
This allows us to study a set of real graphs �the Internet at
the autonomous system �AS� level and protein-protein inter-
action networks� �17� and show that, assuming they are spe-
cific instances of two-vertex correlated network ensembles,
one can exclude the presence of Hamiltonian cycles in the
three-core of these graphs. Our findings are in agreement for
the Internet with what was found in Ref. �18� where a belief-
propagation algorithm was applied to the measurement of the
number of loops in real graphs. The absence of Hamiltonian
cycles in a three-core of a network is an unexpected result
since regular random graphs with connectivity c�3 are
Hamiltonian �8,19�. We note here that the average number
�NL� of loops of size L in a two-vertex correlated network
can possibly be dominated by a very large number of loops
occurring in very rare networks �18�. Nevertheless, prelimi-
nary results indicate that in uncorrelated scale-free networks

with ��3 the ratio
�NL

2�

�NL�2 is bounded at least for small loops

and for Hamiltonian cycles. We expect that similar argu-
ments could also be extended to scale-free correlated net-
works.

The paper is organized as follows: In Sec. I we give an
intuition of the results found for small loops in a two-vertex
correlated network ensemble by considering the problem of
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exact counting of loops in generic networks; in Sec. III we
introduce the hidden variable ensemble and calculate the
number of small loops and Hamiltonian cycles in two-vertex
correlated hidden variable ensembles; in Sec. IV we compare
the results with real networks; and finally we give the con-
clusions in Sec. V.

II. COUNTING SMALL LOOPS IN REAL NETWORKS

In this section we would like to provide some intuitive
arguments to show that in scale-free networks the maximal
eigenvalue of the adjacency matrix and the corresponding
eigenvector are responsible for the number of small loops
present in it. The adjacency matrix ��a�� of a simple network
of size N is the N�N matrix of elements ai,j =1,0 indicating
the existence �ai,j =1� or not �ai,j =0� of a link between node
i and node j. The total number of closed paths of length L
passing though a node i is given by the matrix element �aL�i,i.
The loops NL

�i� of size L passing through a node i are given
by

NL
�i� = �aL�i,i − �corrections� , �1�

where these corrections account for closed paths which in-
tersect themselves at least once and which must be sub-
tracted from the term �aL�i,i in order to consider only loops.
If by �n we indicate the eigenvalues and by un the eigenvec-
tors of the adjacency matrix �a� we find �9�

NL
�i� � �

n

�n
L�ui

�n�ui
�n� − O�ui

�n�4�� . �2�

For small L, the correction terms can be neglected if the
spectrum of the graphs 	�
 contains one large eigenvalue
�0=	0 and if the associated normalized eigenvectors satisfy
0�ui

�n��1" i, as is the case in most scale-free networks. If
these conditions are satisfied the sum over n in �2� is domi-
nated by the term n=0 and consequently the number of loops
of length L passing through the node i is given by

NL
�i� � 	0

Lui
0ui

0, �3�

while the total number of loops of size L is given by

NL =
1

2L
�

i

NL
�i� �

	0
L

2L
, �4�

where the factor 2L accounts for the multiplicity of nodes a
single loop passes through and the two possible directions of
each loop. Thus we found by intuitive arguments that the
total number of small loops of size L of scale-free networks
will scale like 	0

L while the number of small loops passing
through a node is proportional to the square of the maximal
eigenvector associated with 	0. These arguments apply for
the exact counting of small loops in real networks. In a ran-
dom graph ensemble the adjacency matrix is a random vari-
able which has average values of the elements �ai,j�=ri,j and
we need to evaluate the average number of loops �NL� in-
stead of NL. The results we will prove in the following sec-
tions are an extension of the expressions �4� and �3� to a
two-vertex correlated hidden variable network ensemble.

III. AVERAGE NUMBER OF LOOPS IN CORRELATED
HIDDEN VARIABLE ENSEMBLE

To model a general two-vertex correlated network in the
following we will consider networks that are generated
within the hidden variable model �21,20�. The prescription of
Ref. �20� to generate a class of scale-free networks with ex-
ponent � is the following, �1� assign to each node i of the
graph a hidden continuous variable qi distributed according
to a 
�q� distribution. Then �2� each pair of nodes with hid-
den variables q ,q� are linked with probability r�q ,q��. When
the hidden variable distribution is scale-free 
�q�=
0q−� for
q� �m ,Q� and r�q ,q��=qq� / ��q�N�, we obtain a random un-
correlated scale-free network. In this specific case a struc-
tural cutoff is needed to keep the linking probability smaller
than 1, i.e., Q2 / ��q�N��1. This cutoff scales differently with
the system size N depending on the value of �: Q�N1/��−1�

for ��3, Q�N1/2 for �� �2,3�, and Q�N1/� for �
� �1,2�. On the contrary, to generate a correlated scale-free
network with natural cutoff N1/��−1� and ��2 in the literature
different Ansätze have been proposed �21,20�. In order to
present general results on the average number of loops in the
hidden variable ensemble for any type of linking probabili-
ties r�q ,q�� we consider an ordered set of distinct nodes
	i1 , . . . , in , . . . , iL
. With each such kind of set it is possible to
associate a loop in the network in which subsequent nodes
are linked with each other. For each choice of the nodes
	i1 , . . . , iL
 with hidden variables 	qi1

, . . . ,qiL

 the probability

that they are connected in a loop is

r�qi1
,qi2

�r�qi2
,qi3

� ¯ r�qiL
,qi1

� = �
n

r�qin
,qimod�n+1,L�

� �5�

and for each loop of the network there are 2L ordered sets
	i1 , . . . , iL
 which describe it corresponding to cyclic permu-
tations of the indices and to their order inversion. The aver-
age number of loops of size L in the graph is given by the
number of ways we can choose an ordered set of L nodes
	i1 , . . . , iL
 multiplied by the probability that these nodes are
connected in all distinguishable orderings and divided by 2L.
In order to proceed with the calculation, we lump together
nodes with hidden variable qi� �q ,q+�q�, where �q is a
small interval of q. In each interval of q there are Nq

NP�q��q nodes of the network. For each choice of the L
nodes, let nq with �qnq=L be the number of nodes in the
loop with qin

� �q ,q+�q�. The ways we can choose them
within the Nq nodes of the network is given by the binomial
Nq! / �nq!�Nq−nq�!�. Moreover let nq,q� indicate the nodes of a
hidden variable q of the loop linked with a subsequent node
of hidden variable q� in the fixed direction of the loop. We
note that the way to choose 	nq,q�
 is given by the multino-
mial nq! /�q�nq,q�! and that the partition 	nq,q�
 must satisfy
the conditions �q�nq,q�=nq and �qnq,q�=nq�. Finally the num-
ber of ways in which one can permute the L nodes keeping
nq,q� constant is given by �qnq!. Considering all this and that
the probability Eq. �5� that the selected nodes are connected
in the chosen order can be written as �q,q�r�q ,q��nq,q�, we get
the following expression for the average number of loops
�NL� of size L:
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�NL� =
1

2L
�
	nq


��
q

Nq!

nq!�Nq − nq�!�q

nq! �
	nq,q�


�
nq!

�
q�

nq,q�!

��
q,q�

r�q,q��nq,q� �6�

where the sums �	nq
� ,�	nq,q�

� are extended over all 	nq
 and

	nq,q�
 such that �qnq=L, �q�nq,q�=nq, and �qnq,q�=nq�, and
the factor 2L accounts for the multiplicity in which we count
each loop. Introducing the constraints �qnq=L and �qnq,q�
=nq� by explicit � functions, using their integral representa-
tion we find

�NL� =
1

2L
�

−





dx�
	nq


eLx�
q

Nq!

nq!�Nq − nq�!�q

nq!e−xnq

��
−





Dxq�
q

enqxq �
	nq,q�


nq!

�
q�

nq,q�!
�
q,q�

r�q,q��nq,q�

�e−xq�nq,q�,

where Dxq indicates �qdxq, and the sum over 	nq,q�
 is per-
formed over all 	nq,q�
 such that �q�nq,q�=nq. Consequently,
performing the multinomial summations over 	nq,q�
 we get
the following expressions:

�NL� =
1

2L
�

−





dx eLx�
	nq


�
q

Nq!

nq!�Nq − nq�!
e−xnqnq!

��
−





Dxq�
q

enqxq��
q�

r�q,q��e−xq��nq

=
1

2L
�

−





dx eLx�
	nq


�
q

Nq!

nq!�Nq − nq�!

�e−xnqnq!�
−





DxqeQg�	xq
� �7�

with

g�	xq
� =
1

Q
�

q

nq�xq + ln��
q�

r�q,q��e−xq��� . �8�

Notice that in Eq. �7� one can safely take the limit �q→0
and that the average over the P�q� distribution is taken as-
suming that we focus on the limit N→
. In what follows,
we will evaluate Eq. �7� in different ranges of L in the limit
N→
. Assuming L�1 we evaluate the integral over the
variables 	xq
 by the saddle point equation finding

nq = e−xq�
q�

nq�
r�q�,q�

�
q�

r�q�,q��e−xq�
. �9�

If we indicate by Sq� the sum Sq�=�q̄r�q� , q̄�e−xq̄, we can cast
the solution in the following form,

e−xq = nq
1

�
q�

nq�r�q,q��/Sq�
. �10�

This provides the self-consistent equation for 	Sq


Sq = �
q�

nq�
r�q,q��

�
q�

nq�r�q�,q��/Sq�

. �11�

It is easy to check that 	Sq
 satisfying the equation

Sq = �
q�

nq�
r�q,q��

Sq�
�12�

is a solution of Eq. �11�. Inserting a delta function �(Sq
−�q�nq�r�q ,q�� /Sq�) and assuming that the Jacobian of this
transformation is 1, i.e., assuming

Sq
2 � r�q,q�� , �13�

and using the Stirling approximation for the factorial nq, the
integrals over xq calculated at the saddle point take the values
Sq

2nqe−nq ln�nq�+nq and the average number of loops of size L
can be expressed as the following:

�NL� = �
−





dx eL�x−1� � DSq� Dwq�
nq

��
q

Nq!

nq!�Nq − nq�!

��e−xSq
2�nq exp��

q

wq�Sq − �
q�

nq�
r�q,q��

Sq�
�� .

�14�

Finally, performing the summation over 	nq
 we get

�NL� =
1

2L
�

−





dx eL�x−1� � DSq� Dwq�
q

exp�N�ln�1

+ e−xSq
2 exp�− N�

q�

wq�r�q,q��/Sq��� + N�
q

wqSq� ,

�15�

where � �q indicates the average over the distribution of the
hidden variables Nq. In the limit N�L�1 we evaluate the
saddle point equations, finding
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Sq = N� r�q,q��Sq�e
−x exp�− �

q�

r�q�,q��wq�/Sq��
1 + Sq�

2 e−x exp�− �
q�

r�q�,q��wq�/Sq�� �
q�

,

wq = − P�q�

�

�2Sq + �
q�

r�q,q��wq��e−x exp�− �
q�

r�q,q��wq�/Sq�
1 + Sq

2e−x exp�− �
q�

r�q,q��wq�/Sq� ,

� =� Sq
2e−x exp�− �

q�

r�q,q��wq�/Sq�
1 + Sq

2e−x exp�− �
q�

r�q,q��wq�/Sq��
q

�16�

with �=L /N. In order to solve these saddle point equations
we make the Ansätze

N�
q�

r�q,q��wq� = �Sq. �17�

With this assumption we can rewrite the saddle point equa-
tions �16� as

Sq = N� r�q,q��Sq�e
−x−�

1 + Sq�
2 e−x−� �

q�

,

wq = − �2 + ��P�q�
Sqe−x−�

1 + Sq
2e−x−�

,

� = � Sq
2e−x−�

1 + Sq
2e−x−��

q

, �18�

which can be solved, and define the value of �, �=−1.

A. The uncorrelated case

In the uncorrelated case, when r�q ,q��= qq�
�q�N we found

Sq=q� �
�q� which satisfies hypothesis �13�. The results found

in this limit are the same as the ones found in �10�.

B. Small loops

The limit of small loop size is the limit x�1. In this limit
the saddle point equations �18� reduce to

Sq = �
q�

Nq�r�q,q��Sq�e
−x+1,

wq = − P�q�r�q,q��Sqe−x+1,

� = �Sq
2�qe−x+1. �19�

The first equation indicates that Sq is the eigenvector of the
average adjacency matrix Nq�r�q ,q�� with eigenvalue 	
=ex−1, the second equation defines the linear relation be-
tween wq and Sq; and the third equation fixes the normaliza-
tion constant for the eigenvector Sq. In this limit the average
number of loops of size L is given by

NL �
1

2L
�	�L �20�

where 	 is the maximal eigenvalue of the average adjacency
matrix Nq�r�q ,q��, with the results valid until

� �
�Sq

4�
�Sq

2�2 , �21�

where Sq is the eigenvector of matrix NP�q��r�q ,q�� corre-
sponding to the maximal eigenvalue 	�max Sq

2. We observe
that the vector Si=Sqi

with i=1, . . . ,N is the eigenvector of
the matrix ri,j =r�qi ,qj�. In other words 	Si
 is the eigenvector
of the average adjacency matrix of the networks in the en-
semble �ai,j�=ri,j. This result provides the extension of the
arguments of Sec. I, Eq. �4�, to the two-vertex correlated
network ensemble.

C. Small loops passing though a given node

From expression �15� one can also derive the number of
small loops passing through a given node. One can easily
show that

NL�q� �
1

2L
Sq

2		q

L−1 �22�

where Sq is the maximal eigenvector of the matrix
Nq�r�q ,q�� normalized in such a way that �Sq

2�=�	. This
provides the extension of the arguments of Sec. I, Eq. �3�, to
a two-vertex correlated network ensemble.

D. Hamiltonian cycles

The Hamiltonian cycles of a graph are loops of size L
=N. From Eq. �14� we find that when L=N the expected
number of Hamiltonian cycles goes to zero exponentially
with N if

2�ln�Sq�� � 1 �23�

with Sq satisfying

Sq = �
q�

r�q,q��
Nq�

Sq�
. �24�

Consequently, in the thermodynamic limit, since

P�NL � 0� � �NL� , �25�

�23� is a sufficient condition for excluding the presence of
Hamiltonian cycles in the network.

IV. COMPARISON WITH REAL DATA

To test our calculation on real graphs and forecast some
results regarding the existence or not of Hamiltonian cycles
we have to assume that the real networks under study are a
particular instance of a two-vertex correlated hidden variable

network ensemble. Since the average connectivity k̄�q� of a
node depends only on its hidden variable the minimal as-
sumption one can make to fit real networks with the hidden
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variable model is that the average degree is a one-to-one map
to the hidden variable q. In this assumption maximum like-
lihood considerations force us to assume that each real graph
is a random realization of a two-vertex correlated network
with qi=ki and r�q=k ,q=k��=

Nk,k�
�k�NNkNk�

where Nk,k� are the

total number of links between nodes of degree k and k� and
Nk and Nk� are the numbers of nodes with degree k and k�.

This results give a very interesting interpretation of the
dependence of the clustering coefficient on the connectivity
k, i.e., C�k�� 1

k�k−1�		k

2 Sk

2 where Sk is the eigenvector associ-

ated with the maximal eigenvalue 	 of the matrix
Nq�r�q ,q��, in agreement with the intuitive arguments of Sec.
I. In Fig. 1 we found that the data sets of the Internet and the
protein interaction networks �17� have a loop structure well
described by this two-vertex approximation. Moreover, one
can predict if in the three-core of the considered graph there
are no Hamiltonian cycles by evaluating if the condition �23�
is satisfied, i.e., if

2�ln�Sq� −
1

N
�ln�p��� � 1 with Sq = �

q�

r�q,q��
N�q��

Sq�
,

where ln�p� /N= �ln�1− �1+q+q2 /2�e−q�� corrects for the
probability that the network in the ensemble contains nodes
of connectivity k�3 as described in �10�. In particular one
can compare the value of 2�ln Sq� calculated by solving �26�
with r�q=k ,q�=k�� extracted from the data �r�q=k ,q�=k��

=
Nk,k�

�k�NNkNk�
� with the value of 2�ln Sq� in the simplest example

of a correlated ensemble, i.e., the static network ensemble
�22� defined with r�q=k ,q�=k��=1−exp�− kk�

�k�N�. We found

as reported in Table I that the real degree correlations are

such that the presence of Hamiltonian cycles in the three-
core of the network is very unlikely.

V. CONCLUSIONS

In conclusion we have evaluated the number of loops of
any size in two-vertex correlated networks. The results can
be applied to real graphs, finding very good agreement of the
predicted scaling of the clustering coefficient C�k� with the
square of the maximal eigenvector Sk of the matrix
Nk�r�k ,k��, i.e., C�k��Sk

2. Moreover we can have a condition
for predicting the absence of Hamiltonian cycles for the
three-core of Internet and protein-protein interaction data.
The results indicate that degree correlations strongly affect
the loop frequency. Further study would consider how im-
portant are fluctuations of the number of loops around this
average and would consider the frequency of other subgraphs
in correlated scale-free networks.
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FIG. 1. Normalized number of triangles �empty triangles�, quad-
rilaterals �filled squares�, and pentagons �filled circles� passing
through nodes of connectivity k. Data are shown for the Internet at
the autonomous system level in November 1997 �bottom�, in the S.
cerevisiae protein interaction network �center�, and in the H. pylori
protein interaction network �top� �17�. The solid lines indicate the
predictions NL�k��Sk

2 where Sk is the maximal eigenvector of the
correlation matrix Nk�r�k ,k��. The data are shifted to improve the
readability of the graph.

TABLE I. Value of 2�ln�Sq��− �ln�p�� /N with Sq satisfying
Eq. �24� assuming as the maximum likelihood assumption that all
the qi=ki on the nodes of the three-core of Internet graphs, on
various dates and on graphs of protein interactions �8�. We compare
the value of 2�ln�Sq��− �ln�p�� /N calculated with the two-vertex
correlation assumption on real graphs or simply assuming the
minimal assumption r�q=k ,q�=k��=1−e−kk�/�k�N, i.e., 2�ln�Sq

R��
− �ln�pR�� /N. We observe that real correlations are essential to pre-
dict the absence of Hamiltonian cycles in these graphs.

Network 2�ln�Sk��− �ln�p�� /N 2�ln�Sk
R��− �ln�pR�� /N

AS 11–97 −4.73 2.98

4–98 −5.22 3.06

7–98 −5.35 3.03

10–98 −5.56 3.01

1–99 −5.74 3.07

4–99 −6.06 3.09

7–99 −6.28 3.07

10–99 −6.55 3.06

1–00 −6.75 3.07

4–00 −7.20 3.01

7–00 −7.30 3.03

10–00 −7.46 3.01

1–01 −7.428 3.01

3–01 −7.73 3.00

DIP S. cerevisiase −6.46 3.99

H. pylori −4.5 3.8

C. elegans −0.66 2.89
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